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Abstract

In this paper we describe an algorithm for the analysis of termination of
a large set of triggers in an OODBMS. It is quite clear that, if the trigger
mechanism is of sufficient complexity, the problem is undecidable. Yet,
by the extensive use of object-oriented concepts, like derived classes, and
lattice theory, we are able to give some sufficient conditions for termina-
tion which yield satisfying results. Another advantage of our approach
is the uniform treatment of generic update operations on the one hand,
and methods and abstract data types on the other.

Our algorithms are meant to be incorporated into a design tool which
shows the rule designer conflicting subsets of rules. Then the designer can
prove that the rules don’t pose a problem for himself, or he can remodel
his rules to remove the conflict.

1 Introduction

Most current OODBMS are passive, i.e. they only react to explicit requests by
users or applications. An active DBMS executes operations automatically whe-
never certain events occur and/or certain conditions are met. There already
are quite a few proposals for the integration of active behavior into DBMS| e.g.
[Sto92], [GGDI1], [Wid92], [DNPI1] and [GJ92] among many others. Most
of these approaches use ECA-rules which were first introduced by HiPAC
([DBMS8S], [DD89]). ECA means that if a certain Event occurs and a certain
Condition is met, the DBMS automatically executes the specified Action.

ECA-rules can be used for the solution of a big variety of problems in the
DBMS context like automatic enforcement of dynamic integrity constraints,
maintenance of materialized views and derived data, versioning, enforcement
of complex authorization checking, and it can serve as a basis for implementing
large, efficient, and flexible knowledge based and expert systems.

On the other hand, the introduction of ECA-rules into DBMS produces new
problems, which have to be addressed. In general there are two main problems:
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Termination: If one rule’s action triggers another rule (or even itself again),
and this rule’s action triggers a third one, the result of this might be an
infinite cyclic execution of some rules in the DBS.

Confluence: If, by a complex update operation, there are more than one non—
prioritized rules eligible for execution, this might give rise to a nondeter-
ministic final database state after the execution of all triggered rules.

As stated in the abstract, one can easily verify, that the problem of detec-
ting these properties at definition time is undecidable if the formalism for the
expression of ECA-rules is of sufficient complexity.

Unfortunately, in the research community one can observe the trend, that
almost all articles and reports about active DBMS are concerned with even more
powerful languages for the expression of rules, which makes the analysis of the
above mentioned properties more and more difficult, instead of addressing the
nightmarish behavior of rules in DBMS where safety should be topic number
one.

The goal of our work is to show, that, with a limited language for the expres-
sion of ECA-rules, which is able to simulate many of the complex constructs
one can find in most publications about active DBMS, one can give very good
sufficient conditions for termination and confluence of large sets of rules. In
this article we present an algorithm for the analysis of termination. This algo-
rithm 1s meant to be incorporated into an interactive tool for the development
and definition of ECA-rules for large applications. The algorithm can either
guarantee, that a certain set of rules will terminate, or it can isolate the rules,
which might give rise to a non-terminating execution of rules and thus giving
the programmer the opportunity to revise his rule design.

This article is organized as follows: In the next two sections we give a
short introduction into OSCAR, the OODBMS prototype, into which our rules
are incorporated, and into the syntax and semantics of our language for the
expression of ECA-rules. Section 4 explains the concepts of our algorithm,
followed by the comparison of our approach with related work in section 5 and
some conclusions in section 6.

2 The object—oriented database model of
OSCAR

As mentioned in the Introduction, these examinations are based upon the
OODBMS OSCAR and especially upon the structural part of the object—orien-
ted database model EXTREM [Heu89, HH91] and the OSCAR query operations
[HFWI0].

To distinguish between values and objects, we introduce disjoint infinite sets
of abstract domains D 4 representing objects in contrast to simple domains Dg
consisting of values like INTEGER or STRING. Each element of an abstract
domain is called an object, each element of a simple domain is called an atomic
value. One special symbol in each of the domains is the null value L.

A class represents a (typed) set of possible objects. Tt can be an extensional
base class or an intensional deriwved class. A base class either has an abstract
domain or is a specialization of other classes (then it is called a free class). The
assignment of domains to free classes is done by inheritance (see below).
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CLASS Persons

ATTRIBUTES age : INTEGER
CLASS Employees SPEC Persons
ATTRIBUTES salary : REAL
department : Departments
superior : Employees

UPDATE METHOD adjust_salary()
MODIFIES salary

CLASS Applicants SPEC Persons
CONSTRAINT DISJOINT Employees, Applicants

Figure 1: Complete EXTREM scheme for the running example

Example 2.1 The example used throughout this paper collects information
about persons and departments (see Figure 1). We introduce Departments
and Persons as classes with an abstract domain. Since both applicants and
employees are special persons which have common properties (or attributes)
like Age, they are introduced as specializations (see below) of Persons.

O

An object set o for class C' is a finite subset of the domain of C' and denoted
by o(C'). For free classes, the domains are fixed by the class hierarchy. The
set of specializations is a binary relation SPEC over base classes. Each tuple
of SPEC is denoted by €y SPEC C5 where € has to be a free class. C is
called subclass, Cy superclass. The (reflexive and) transitive closure of SPEC
is denoted by <(<). We require < to be a partial order over base classes.
Formally, we have for each free class '

olCyC (] olCo).

(C,C.)ESPEC

Example 2.2 In the running example, we have the specializations Employees
SPEC Persons and Applicants SPEC Persons. In Figure 1 specializations are
introduced by the keyword SPEC. O

For the EXTREM scheme, we can define a set of integrity constraints. For
example, the object sets of Employees and Applicants (both subsets of Persons
by subclassing) are forced to be disjoint by the additional disjointness constraint
in the scheme definition.

Each object is assigned a tuple of attribute values called its state. All ob-
jects of a fixed class are required to have the same state type, 1.e., a fixed tuple
of attributes. As attribute values, we can use simple or constructed values or
even objects, then the corresponding attributes are called simple, constructed,
or object-valued attributes resp.. We can recursively construct new domains
by applying set-, tuple- and list-constructors on simple and abstract domains.
Additionally, we can define user-defined Abstract Data Types (ADTs) by en-
capsulating the type contructors and accessing the values by ADT-functions
visible at the interface of the ADT.
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| Employees || salary | department | superior | age |

I 3000 | ay 1 51
62 1200 [0'5] ﬁ1 60
ﬁg 800 [0'5] ﬁ1 33
ﬁ4 1050 (875) ﬁ5 25
Bs 4000 | a2 1 55

| Departments || name |

o Toys

o Drugs

Figure 2: Object relations for the classes Employees and Departments

Fach attribute A is assigned a unique domain dom(A). An attribute with
a set- or list-valued domain is called a complex attribute.

Example 2.3 In Figure 1, attributes are defined in the ATTRIBUTES-section of
the EXTREM scheme definition language. For example, the attributes of the
class Employees are salary (a simple attribute), department superior, which are a
object-valued attributes. The attribute values for these attributes are elements
of the object sets of Departments and Employees, resp.. Since each Employees is
a subclass of Persons, each element of the domain of Student is assigned an age
besides the explicitly mentioned attributes. O

The instances of classes, i.e. objects and their states, can equivalently be
represented by nested relations with additional surrogate attributes. These
nested relations are called object relations and are in fact functions from object
sets to their states (see [HS93]).

Example 2.4 As an example, we present the object relations for the clas-
ses Employees and Departments in Figure 2. The Employees and Departments
columns, resp., represent the object identities of both classes. The values of
the object-valued attribute department are department objects. Hence, Depart-
ments 1s a component class of Employees and, vice versa, Employees is called an
owner class of Departments. O

The behavioral component of EXTREM allows the definition of methods for
each of the classes and the inheritance of methods from superclasses to subclas-
ses. We distinguish between query methods (derived or computed attributes)
and update methods, where the effect is a state change of objects in the appro-
priate class. In the interface of methods, attributes used in the implementation
of the methods are specified in the USES-section of the interface. In the interface
of update methods, attributes (used and) modified by the method are specified
in the MODIFIES-section.

Example 2.5 We have defined an update method adjust_salary in class Em-
ployees which decreases the salary of an employee to within a certain reach of
social welfare. O
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In OSCAR, deriwved classes can be computed by object algebra expressions,
queries in the O2QL language, or programs in the rule-based language LIVING
IN A LATTICE (see [HFW90, VdBH93, HS93]). For example, we can derive
a subclass of employees employed in the “Toys” department by specifying the
02QL query

DERIVED CLASS Employees_of_Toys_Department
SELECT OBJECT Employees

FROM Employees

WHERE department.name = ‘Toys’ .

On the other hand, we also can have (complex) values as a query result. The
following query simply computes a set of INTEGERs (ages of employees of the
“Drugs” department):

SELECT age
FROM Employees
WHERE department.name = ‘Drugs’

A derived class can be used in the same way as base classes. The following
ECA-rules and the techniques to detect non-terminating and non-confluent
rules are heavily based on this feature of OSCAR.

3 The OSCAR Trigger System

The OSCAR system offers a trigger system which should be sufficient for most
applications. The basis of our triggers are the widely accepted ECA-rules,
which were first introduced by HiPAC ([DBMS&8], [DD89]).

3.1 Syntax
The syntax for the definition of a trigger in OSCAR is as follows:

CREATE RULE name

AFTER Event {OR Event|AND THEN Event|XOR Event}

[IF Condition]

THEN DO [INSTEAD] Action [DIRECT|DECOUPLED] [ON INSTANCE LEVEL]
[PRECEDES RuleNameList]

[FOLLOWS RuleNameList]

The definition of an Event is:

Operations TO
"("Classexp")"{."("Attribute{, Attribute}")"}
[WHERE Selectexp]

Operations is defined as:

"("Operation{; Operation}")"
Operation := "Insert" | "Update'" | "Increase" | '"Decrease"
"Delete" | "Retrieve" | Methodname

The other expressions are defined as:
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Classexp is an expression with class names and the set operators U, N and \,
defining a derived class.

Attribute 1s an attribute which 1s defined for the derived class.

Selectexp is a valid query language selection, defined on the derived class,
giving another (specialized) derived class as a result. Thus the semantics
of an event is fulfilled.

Methodname is a method call which 1s valid for the derived class.

Condition is an existentially qualified O?QL query with the additional key-
words NEW and OLD for referencing the old and new sets of objects before
and after the triggering operations (if applicable). Alternatively, we can
use the transition classes (defined below) instead of NEW and OLD.

Action 1s a list of the following expressions:

An update expression,
e an insert expression,
e a delete expression or

e an expression of the form:

Methodname TO Classexp [WHERE Selectexpl

3.2 Semantics

The semantics of an OSCAR trigger is pretty straight—forward. The building
blocks of rule processing are closed nested transactions. If the event detec-
tor signalizes an event which triggers a rule, the query which makes up the
Condition part will be evaluated at a rule assertion point (i.e. a point in time,
where a rule execution cycle is started: end of transaction or user defined). If
the result of the query is not empty, the Action will be executed. If the keyword
DECOUPLED is present in the definition of the rule, a new root transaction will be
started for the Action which runs autonomously from the triggering action, i.e.
if the triggering action aborts, the Action part of our rule will be committed
(if successful). Otherwise (keyword DIRECT, this is the default) the Action will
run as a subtransaction of the transaction that raised the triggering Event. All
nonfatal error codes will then be forwarded to the parent transaction which is
responsible for the treatment of the error condition. If a fatal error occurs, the
complete transaction will be aborted.

An Event is defined by a set of operations which are performed on a derived
class. This derived class 1s specified by

1. the Classexp which consists of an expression with classnames and the
set operators, thus defining a dreived class.

2. Then a specialization of this derived class is constructed by the specifica-
tion of a Selectexp which may use attributes of the derived class only.
It limits the number of eligible extensions by giving a condition which all
extensions have to fulfill. Therefore the Selectexp can be viewed as a
class invariant, and yields a valid derived class.
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Thus the usual semantics of an event, as we know it from other publications,
is kept.

The Condition and Action can refer to transition classes or instances (in
the set—oriented or instance-level case respectively) for obtaining informations
about the changes which triggered the rule. For each defined rule one set of tran-
sition classes is created corresponding to the Operations defined in the event
paﬂ;(rulenameJiel, rulename_ins, rulename newupd, rulename_oldupd)
These derived classes are not real base classes. Therefore It is not allowed to
define rules on them. If a rule’s event is complex, i.e. consists of some basic
events connected by OR or AND THEN the derived transition classes are crea-
ted as a generalization of the derived classes which are defined in the basic
events. The access to these generalizations is managed by an intelligent query
processor.

All extensions which have been deleted, inserted and updated by some rule’s
actions including the effects of the last “regular” DML statement', are kept in
these change classes. As mentioned above the domain and structure of these
transition classes correspond to those of the derived classes which are defined
in the event part of the rule rulename.

If the keyword ON INSTANCE LEVEL is present, the rule will be triggered
once for each involved instance. Otherwise the rule will be triggered only once
for the complex data manipulation operation.

If the keyword INSTEAD is present, the Action part will be executed instead
of the triggering action as in POSTGRES ([Sto92], [ST90])

After each DML statement the transition classes are filled with the objects
which were deleted, updated, inserted or retrieved by this DML statement if
one of the Operations occurs for the Attribute (if specified) for a nonempty
subset of the extensions, described by the Classexp and the Selectexp in the
respective rule definition to which the transition classes belong.?

At each rule assertion point (i.e. at each point in time, where the rules
will be evaluated and executed: end of transaction or user defined) the rules
triggered rules are executed with respect to the following algorithm:

WHILE {not_empty_derived_rule_class}
- {not_yet_completed_composite_event} != {} DO

BEGIN
Select one of the rules r with the highest priority
where {not_empty_derived_rule_class}

- {not_yet_completed_composite_event} != {};
Evaluate its Condition;
IF Condition = TRUE
THEN Execute it in the required fashion;
Delete all objects out of their corresponding
derived_rule_classes;
Check for completion of composite events
END; {WHILE}

The detection of complex events involving AND THEN is done by means of
Petri nets.

Iwhich started the cascading execution of rules
?Please note, that in our model objects can exist in more than one class at a time.
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Example 3.1 Consider the following rule:

CREATE RULE toy_subordinate_del

AFTER (DELETE) TO Employees
WHERE department.name = "Toys"

IF EXISTS SELECT OBJECT Employees FROM Employees
WHERE department.name = "Toys"

THEN DO DELETE FROM Employees WHERE department.name = "Toys"
AND superior IN toy_subordinate_del_del

This trigger recursively deletes employees of the toy department if their chief is
deleted. The rule’s name is toy_subordinate. del, it gets triggered by a dele-
tion, and therefore a transition class is created automatically. It’s name is con-
structed according to the rules mentioned above: toy_subordinate del _del.
This transition class is then used in the Action part of the rule to perform the
required deletions. O

4 Termination

4.1 Introduction

We’ll first give a brief sketch of the idea behind our analysis algorithm. It is
somewhat similar to the termination test in [AWH92]. The improvements in
our algorithm consist of

e the incorporation of OO concepts,

e the use of generic operations as well as method calls as Action,

a much richer rule model,

greatly improved sufficient conditions (even in the first stage), and

an additional analysis stage, which makes our sufficient conditions even
stronger.

Also, we can equally handle set—oriented and instance—level rules. In the rema-
inder of the article we concentrate on set—oriented rules.

Our algorithm consists of two stages. In the first stage we construct a
triggering graph out of the syntax of our rules. If our triggering graph has
no cycles, we can guarantee that our set of rules will terminate for all initial
database states.

In the second stage we analyze all strong components of the graph sepa-
rately. We group the actions together to one complex operation which modifies
the same objects in the same derived class. If this complex operation satis-
fies certain criteria like monotonicity, we are able to remove some edges in the
respective strong component, thus possibly eliminating some cycles.

The only prerequisite needed for our algorithm is the assumption that the
Action part of a trigger will always terminate. This is not obvious because as
a part of the Action there may be a method call. Qur methods are written
in a Turing—complete programming language. If there are only retrieve, insert,
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update and delete statements in the Action part of each trigger, this property
is guaranteed to hold.

Our goal is to compute subsets of triggers {¢;,,...,1;,} out of a set of triggers
T = {t1,...,1,} that might give rise to non—terminating cyclic execution of the
triggers’ actions, or, vice versa, to verify that the triggers in 7" will terminate
for all initial database states dj.

4.2 Domains as Lattices

For the analysis of termination in the two stages of our algorithm we need
a formal foundation for the application of fixed—point theorems. Therefore we
apply the notion of lattices to our domains. This enables us to treat all domains
in a uniform way.

By a lattice we understand a system A = (4, <) formed by a nonempty set
A and a binary relation <, which establishes a partial order in A, and that for
any two elements a,b € A there is a least upper bound a U b and a greatest
lower bound a Nb.

Every domain in OSCAR? consists of such a nonempty set. The partial or-
der is either defined by default or can be defined by overloading the comparison
operators (for not set—valued ADTs). For the ordering of all set-valued domains
(i.e. Classes, some ADTs, SET and LIST?) we use the set inclusion relation.
The least upper bound and the greatest lower bound of any two elements of
one of our domains can thus be obtained straight—forwardly by applying the
above definitions.

We call an operation o : A L— A increasing (decreasing) if © < o(x)
(z > o(z)).® For example a deletion of an element of a set is an decreasing
operation, because the cardinality of the set before the deletion is greater than
the cardinality of the set after the deletion.

4.3 First Stage

In the first stage of our algorithm a directed triggering graph Gp = (V, E)
is constructed out of the syntax of the trigger definitions in 7. Each t; € V
represents a trigger ¢; € 7. An edge e from ¢; to ¢; in E denotes, that ¢;
might trigger ¢;. Therefore, if Gp’s strong components consist of isolated edges
without loops, we can guarantee the termination of our trigger set.

For the analysis of when to draw an edge from #; to ¢;, we need the notion
of an event. An event is defined as follows:

Definition 4.1 An atomic event e is ¢ §-tuple e = (0, C, A, S) where

O s a set of operations as defined in the syntax description, i1.e. RETRIEVE,
INSERT, UPDATE, INCREASE, DECREASE, DELETE, Methodname

C' is a derived class, constructed out of the Classexp defined above,

3Classes, ADTs, INTEGER, REAL, CHAR, STRING, BOOLEAN, SET, TUPLE and
LIST

4We just neglect the ordering of a list’s elements

5Note, that our definition differs from the usual definition of increasing (decreasing) ope-
rators in lattices!
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A is a set of attributes which are valid for the derived class, defined by C,
S is an instance of the Selectexp defined above.

For each atomic event this 4—tuple can easily be computed out of its syntax. A
composite event, which is constructed out of atomic events, interconnected by
the OR and AND THEN operators and maybe brackets, is a set of atomic events,
which can be computed by using the following rules:

1. Get the subexpression cel op ce2 with the two composite events cel
and ce2 and the highest precedence.

2. If op = OR or op = XOR, replace the expression by the composite event ce
= {cel, ce2}, i.e. the rule is triggered by the occurrence of either cel
or ce2.

3. If op = AND THEN, replace the expression by the composite event ce =
{ce2}, i.e. if the rule is triggered by the occurrence of ce2 after cel
occurred, we consider the occurrence of ce2 only.

4. If the remaining expression consists of a single composite event ce, then
end, else goto step 1.

In almost the same manner it is possible to compute an atomic event out
of each statement of a trigger’s Action—part straight—forwardly. The resulting
composite event, which we will call actionevent in the sequel, describing the
complex event, which is caused by a trigger’s Action, is obtained by uniting all
atomic events. The following algorithm shows the basic steps of this procedure:

Algorithm 4.1 (Action — actionevent) This algorithm performs a trans-
formation of each statement of an Action into an event e;. The resulting
actionevent ae then is the union of all e;:

INPUT: Action with statements si, i = 1...n;
QUTPUT: actionevent ae;
FOR EACH statement si in the Action do

BEGIN
IF si IN {insert, delete}
THEN BEGIN

compute 0, C and S out of the syntax of si;
A := {all attributes of the derived class C}
END;
IF si IN {updatel}
then compute 0 (which could also possibly be increase or
decrease), C, A and S out of the syntax of sij;
IF si IN {methodcall}
THEN BEGIN
IF si is an update method
THEN IF the method is labelled as being increasing
(decreasing) THEN O := {retrieve, increase}
(0 {retrieve, decreasel})
ELSE O {retrieve, update}
ELSE 0 := {retrievel};
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compute C and S out of the syntax of the method call;
compute & out of the USES and MODIFIES list of the
method;
compute additional (0,C,A,S) tuples if in the method
body there are further retrieve operations;
END
END;

We now use these two kinds of events to analyze, whether one rule’s action
can trigger the activation of another rule, i.e. we have to add an edge (¢;,1;)
to the set of edges F of Gr. We therefore have to check for each rule’s (¢;)
actionevent, whether it has something in common with the events of all rules,
including ¢; itself.

A rule’s actionevent ae might trigger another rule ¢; if none of the following
properties hold for each combination of atomic events of ae (e1) and ¢; (e2):

1. The set of operations, that e; performs is disjoint to the set of operations,
to which e, responds, or ey includes an increase or decrease operation
and e responds to arbitrary updates.

2. The least common upper bound in the class lattice of the derived class,
on which e; performs its action and the derived class which is defined in
eo is Object, i.e. the most general class in the class hierarchy . In this
case, the two events are defined on disjoint derived classes.

3. The two events are defined on disjoint sets of attributes.

4. The set of objects defined by the SELECT OBJECT expression of e and the
set of objects defined by the SELECT OBJECT expression of eg is disjoint
for all database states.”

If all four properties at once hold for at least one arbitrary combination of
atomic events e; of ae and ey of ¢;, we have to include the edge (¢;,1;) into E,
thus marking that ¢; might trigger ¢;.

As stated above, we have to go through these steps for all pairs of rules,
which can be constructed out of 7. If the strong components of the resulting
triggering graph G'r consist of isolated edges without loops only, T' is guaranteed
to terminate for all initial database states. If this condition does not hold, we
now have to launch stage two on Gp, which analyzes all strong components
separately, in order to find some edges that can be removed.

We summarize the notions defined above with a little example:

Example 4.1 We introduce two triggers. The first trigger fires if an old em-

ployee (age > 40) is inserted into the Employees class. Tt will then delete the

oldest employees so that our company does not have too many old employees.

The second trigger fires if a young employee (age < 40) is deleted. Tt will then

insert the youngest employee from the class Applicants into the Employees class.
The two triggers for this purpose are defined as follows:

6In the running example, Persons and Departments are automatically disjoint specializati-
ons of Object.
"This can (for some cases) be verified by testing predicates like in [BINS94]
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t1:

AFTER (INSERT) TO Employees WHERE age >= 40

THEN DO DELETE FROM Employees WHERE (age >= 40) AND (age >= ALL
(SELECT age FROM Employees))

t2:
AFTER (DELETE) TO Employees WHERE age < 40
THEN DO

INSERT INTO Employees OBJECTS

SELECT OBJECT Applicants FROM Applicants WHERE age <= ALL
(SELECT age FROM Applicants);

DELETE FROM Applicants OBJECTS

SELECT OBJECT Applicants FROM Applicants WHERE age <= ALL
(SELECT age FROM Applicants)

In the corresponding triggering graph G we have edges
E= {(61a Cl@l), (62a aez)a (062, 61)}~
E does not contain (aey,e2) because a predicate testing algorithm can verify
easily that the set of objects which is touched in the action of #; is disjoint to
the set of objects to which deletions 5 reacts for all possible extensions of the
class Employees.

Thus Gp does not contain any cycle. Therefore T = {t1,12} is guaranteed
to terminate for all initial database states dj. O

4.4 Second Stage

Because of the limited space available, we can just give a brief overview of the
main concepts, we are using for the second stage of our algorithm.

We now analyze each strong component of G'r, which does not consist of
an isolated edge without loops, separately. It is possible to remove an edge
from a strong component of Gp, if one rule some time performs an ”empty”
operation after a finite number of steps. This is for example the case, if we have
a delete operation on a set—valued domain. If there is no other operation in
the respective strong component, which inserts a value into the set, repetitive
deletion of elements from this set will, after a finite number of steps, yield an
empty set. Any further delete operations on this set will therefore be operations,
that perform nothing on the database. Thus, the cycle will be interrupted,
and we can remove the respective edge from this rule to the next one which
is triggered by the respective deletion of objects. We extend this notion to
arbitrary types by the extensive use of lattice theory.

If we can’t fulfill the conditions which are shown below, the respective edges
won’t be considered for removal.

We model this behavior by means of lattices. Each possible domain in
OSCAR can be interpreted as a lattice.®

Lemma 4.1 The repetitive application of an increasing (decreasing) operation
on a lattice will terminate after a finite number of steps if:

8For ADTs we have to overload the comparison operators. If this is not done, the respective
edge will not be considered for removal from Gp.

www.manaraa.com



1. the step size of the operation is non—decreasing (non-increasing)?,

2. there is an upper (lower) bound for the operation (possibly the ”0” and
717 elements of the lattice, if it is complete).

Proof (Sketch):
The termination itself follows out of the application of the contraction theorem.
The property that the step size must not be decreasing is used for proving the
termination after a finite number of steps for lattices with an infinite number
of elements. O

The property, whether an operation is increasing or decreasing can be acqui-
red by analyzing the transitional conditions of methods and applying predicate
testing algorithms to update operations. For the deletion and insertion of values
from and into set—valued attributes or classes, this property holds obviously:
A delete 1s a decreasing operation, because the cardinality of the set becomes
smaller, an insertion is an increasing operation, because the cardinality is in-
creased. The lower bound for operations on sets 1s the empty set, the step
size in a set is at least the increasing or decreasing of the cardinality by one.
Therefore these properties hold automatically for most operations on sets.

The upper or lower bounds for the operations can be formulated in either
of three ways:

e as integrity constraints on (derived) classes,
e as integrity constraints on methods,
e in the definition of the derived class in the Selectexp.

These conditions, if met, won’t lead to an transaction abort. Instead the
transaction won’t be started. Therefore, even in the DIRECT mode, a complete
rollback of all rule actions will never take place, thus ensuring the wanted
semantics.

In order to verify these properties for a selected strong component we group
together all operations of this component, that act on the same attributes of
the same extensions, into a composite recursive operation. If the above sta-
ted properties hold for one of the composite operations, we can remove the
edge from G which connects the rule with the some time "empty” operation
with the next rule (which is triggered by this operation), thus reducing our
strong component, which will eventually split into several strong components
with isolated edges without loops. In this way it might be possible to eliminate
complete cycles, which were created in the first stage of our algorithm. If we
can’t verify all of the above properties, the strong component remains untou-
ched and is presented to the programmer ”as is” for further considerations or
remodelling.

Example 4.2 We now consider the rule defined in example 3.1. For this ex-
ample the first stage of our algorithm would yield a triggering graph consisting
of an isolated node (representing the single trigger) with a loop. In the se-
cond stage this loop will be removed because in this strong component there

9This condition can be relaxed by using research results for real and integer valued
functions
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are only delete operations and the rule 1s triggered by this delete operation.
In the ”worst” case, the cascading triggering will stop when all objects hve
been deleted from the class Employees. After the removal of this edge, we have
a single node without loops left. Therefore our algorithm can guarantee the
termination of our set of rules for all initial database states.

This special case may not be new, but in our approach it is smoothly inte-
grated into a much broader theory of eliminating edges with the help of lattice
theory. O

A more complex situation is shown in Example 4.3.
Example 4.3 We now consider the following rule:

CREATE RULE decrease_salary
AFTER (DECREASE) TO Employees.salary

WHERE decrease_salary_newupd.salary > 1000
DO decrease_salary_newupd.adjust_salary(100.0) DECOUPLED

This rule lowers all salaries of employees, who receive a cut of salary, until it
is just below $1000. For removing the concerned edge in Gy the second stage
has to verify the following conditions:

e The method adjust_salary() must decrease the salary. This condition is
met by a transitional constraint on the method (see below).

e The step size must be non-decreasing. This property is met because
we have a constant parameter (100.0) which is used in the transitional
constraint

(decrease_salary oldupd.salary =
decrease_salary newupd.salary - amount_ of decrease).

Additionally, we need the precondition amount of _decrease > 0.

e There must be a lower bound for our operation. This condition is met be-
cause of the simple (i.e. automatically verifiable) condition in the WHERE—-
clause. The lower bound could have also been specified as an integrity
constraint on the class Employees or as a post condition of the method
adjust_salary().

Therefore the second stage would have eliminated the respective edge, thus
guaranteeing the absence of non—terminating cyclic execution of our rule. If we
had not had the precondition and the transitional constraint on the method,
the second stage would not have touched the respective edge in Gr. O

5 Related Work

In the last years there have been a lot of papers about many aspects of ECA—
rules starting with their introduction by HiPAC ([DBM88], [DBB*88], [DD89]).
The ECA-rules have since then become a kind of standard principle for most
active DBMS. Most of the articles about ECA-rules in DBMS are concerned
with the general architecture, mechanisms for expressing and detecting events,
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conditions and actions, their representation within the DBMS, the embedding
of triggers in transactions and their applications. Widely known approaches
for the general architecture of active DBMS include SAMOS ([GD92], [GD93])
with a very powerful event specification language and refined facilities for the
detection of composite events using Petri nets ([GD94]), the event specification
language Snoop ([CM93]) with very powerful mechanisms for the expression
of complex events and REACH ([BBKZ92]) with the stress on the temporal
aspects and performance.

As mentioned above, the second wave of publication about active DBMS is
mainly concerned with the applications of ECA-rules for various purposes. E.g.
quite a few articles deal with using triggers for the enforcement of constraints.
Among them are Starburst ([CW90]), an extension to the latter approach by
Ceri et al. ([CFPT92]) and an approach by Lipeck, Gertz et al. which also
incorporates temporal integrity constraints ([Ger94]). Other applications for
active DBMS include the maintenance of derived data and materialized views.

All these approaches have the problems of termination and confluence in
common, and yet there are only very few proposals for solutions. Even in com-
mercial systems which incorporate active features like Ingres and Oracle, these
problems are only addressed in a very restrictive way, if at all. These systems
deal with termination by enforcing an upper bound for the cascaded triggering
of rules during runtime. If this upper bound i1s met, the whole transaction will
be rolled back even if in the next cycle the cascading triggering would termi-
nate. In Oracle one cannnot even set this upper bound. It is hard—wired to 64.
Confluence is not addressed at all, it is the user’s responsibility to foresee all
possible problems.

The only articles dealing with the problem of termination in active DBMS
are the following:

e In [KU94] the authors use a different paradigm than in our approach:
their approach is based on term-rewriting systems which is hard to com-
pare to the ECA-approach we and others use.

e In [CFPT92] the authors deal with the problem in the limited focus of
constraint enforcement. They only mention some heuristic techniques.

e In [VS93] the authors give sufficient conditions to analyze termination of
CA—triggers at definition time. Unfortunately they only use a very limited
formalism for the definition of triggers. Their triggers consist of a simple
query, which, if evaluated to true, can trigger a simple and single attribute
assignment. Thus, our rule definition language is much more powerful
than theirs (for which termination and confluence are even decidable!)
and their approach cannnot be easily transferred to ECA-rules.

o [AWH92] deals with the problem of termination in the context of rela-
tional databases. In our object—oriented approach we benefit from the
richer semantics in two ways:

1. We give a more powerful language for the expression of triggers and

2. we can use the richer semantics of the OO data model for a more
accurate analysis.
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The first stage of our algorithm resembles the one proposed by Widom
et al., but even there we benefit from the use of the INCREASE and
DECREASE constructs, which already makes our first stage more power-
ful than their algorithm. Additionally, we benefit from the more powerful
object-oriented concepts like subclassing. For example, it is not possible
in Starburst to express and therefore analyze subsets of tuples of relati-
ons in their events. Thus, they cannot automatically detect that the rules
defined in example 4.1 are guaranteed to terminate after a finite number
of steps.

In the second stage we perform an even deeper analysis, thus making
our conditions much weaker. E.g. we can detect in the examples 4.2 and
4.3 that there is no non—terminating cyclic execution. The algorithm in
[AWH92] would detect a possible cyclic execution.

e In [BW94], the authors give better conditions for the analysis of termi-
nation than in [AWH92] but they also reach only the power of our first
stage. Furthermore, they only deal with CA-rules in a relational context.

It is our idea to start out with a comparatively simple language for the
expression of rules, for which we can give very strong sufficient conditions.
After this step 1s taken, we can simulate most of the more powerful atomic
events and event constructors one can find in other approaches. These can then
be made available to the user by the definition of macros which are internally
broken down into our basic events and event constructors for the analysis of
termination. For example we can simulate

e an absolute time event by defining an event on the system class time,

e a periodic time event (e.g. every 30 minutes) by an event like
AFTER (UPDATE) TO system_clock.minutes
WHERE minutes mod 30 = 0O

bl

e e.g. ANY 2 (E1,E2,E3) by (E1 AND THEN E2) OR (E2 AND THEN E1)
OR ... OR (E3 AND THEN E2)'0,

e other complex event constructors by sequences of triggers which record
the needed prerequisites for the signaling of the complex event (e.g. ar-
bitrary intermediate states) in some specially defined classes. This can
easily be hidden from the user.

For the detection of complex events at runtime one can of course choose a
strategy with a better performance. Nevertheless it is thus possible to verify
the property of termination without the need to extend our algorithm on the one
hand, or it is possible to extend our algorithm to support other atomic events
or event constructors, whichever strategy seems more feasible and adequate.

6 Conclusions and Future Work

We described a set of algorithms that allows the efficient analysis of termination
of a set of ECA-rules at definition time. Our algorithm cannot find the exact

10This is a generalization of the AND operator!
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answer for all cases, but it gives some strong sufficient conditions which can
isolate all subsets of rules that em might give rise to non—terminating execution.
Our conditions are meant to be incorporated into an interactive design tool for
the definition of rules which shows the rule designer all subsets of rules which
may lead to non—terminating cycles of rule executions. On the other hand we
can restrict the number of rules which have to be watched for cycles during
runtime.

By using OODB concepts on a large scale we have the opportunity to take
advantage of the greater expressiveness of object—oriented databases, e.g. we
can use the class lattice for the verification of empty intersections between deri-
ved classes which is a decidable problem. Another advantage of our approach is
the uniform treatment of generic update operations as well as method calls on
the one hand, and of all data types, including abstract data types on the other
hand, thus incorporating the object—oriented concepts which our data model
defines. The data model is a real object—oriented model with all the required
features. On the other hand it is more of an evolutionary approach from the re-
lational world. We don‘t give up all the ”goodies” like set—orientedness, generic
updates and associative query languages, which made the relational model as
successful as 1t is nowadays. Therefore our approach can easily be remodeled
for the use in relational databases as well as object—oriented databases.

We are currently investigating sufficient conditions for the property of con-
fluence. Also for this aspect one can expect improvements over existing results
for active relational databases.

The next step of our approach which i1s under development, will be a tool
that analyzes conflicting triggers during runtime by the use of Petri nets. Only
conflicting rules have to be considered. Furthermore more complex composite
events can easily be modeled by means of Petri nets.

Other specifics like event inheritance and others play a vital role in other
fields like e.g. event detection but fall out of the scope of this paper. These
aspects will be treated in a soon—to—appear PHD—thesis by the first author of
this article.

Finally, there are quite a number of improvements we are planning for our
algorithms, namely:

e extending the Actions by procedural constructs like IF - THEN - ELSE
and loops,

e analyzing the property of confluence ([AWH92]),
e using incremental methods for the construction of G,

e using OO concepts like specialization for complex events thus making the
detection of events easier,

e developing procedures for the run—time observation of possibly hazardous
rules,

e representing our triggers at the meta level of OSCAR,

e implementation of our algorithms to analyze their behavior for large sets
of triggers.
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