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An Algorithm for the Analysis ofTermination of Large Trigger Sets inan OODBMSThomas Weik�Institut Praktische Informatik, TU Ilmenau98716 Ilmenau, GERMANYAndreas HeueryComputer Science Department, University of Rostock18051 Rostock, GERMANYAbstractIn this paper we describe an algorithm for the analysis of termination ofa large set of triggers in an OODBMS. It is quite clear that, if the triggermechanism is of su�cient complexity, the problem is undecidable. Yet,by the extensive use of object-oriented concepts, like derived classes, andlattice theory, we are able to give some su�cient conditions for termina-tion which yield satisfying results. Another advantage of our approachis the uniform treatment of generic update operations on the one hand,and methods and abstract data types on the other.Our algorithms are meant to be incorporated into a design tool whichshows the rule designer con
icting subsets of rules. Then the designer canprove that the rules don't pose a problem for himself, or he can remodelhis rules to remove the con
ict.1 IntroductionMost current OODBMS are passive, i.e. they only react to explicit requests byusers or applications. An active DBMS executes operations automatically whe-never certain events occur and=or certain conditions are met. There alreadyare quite a few proposals for the integration of active behavior into DBMS, e.g.[Sto92], [GGD91], [Wid92], [DNP91] and [GJ92] among many others. Mostof these approaches use ECA{rules which were �rst introduced by HiPAC([DBM88], [DD89]). ECA means that if a certain Event occurs and a certainCondition is met, the DBMS automatically executes the speci�ed Action.ECA{rules can be used for the solution of a big variety of problems in theDBMS context like automatic enforcement of dynamic integrity constraints,maintenance of materialized views and derived data, versioning, enforcementof complex authorization checking, and it can serve as a basis for implementinglarge, e�cient, and 
exible knowledge based and expert systems.On the other hand, the introduction of ECA{rules into DBMS produces newproblems, which have to be addressed. In general there are two main problems:�e-mail: weik@PrakInf.tu-ilmenau.deye{mail: heuer@informatik.uni-rostock.de 1
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Termination: If one rule's action triggers another rule (or even itself again),and this rule's action triggers a third one, the result of this might be anin�nite cyclic execution of some rules in the DBS.Con
uence: If, by a complex update operation, there are more than one non{prioritized rules eligible for execution, this might give rise to a nondeter-ministic �nal database state after the execution of all triggered rules.As stated in the abstract, one can easily verify, that the problem of detec-ting these properties at de�nition time is undecidable if the formalism for theexpression of ECA{rules is of su�cient complexity.Unfortunately, in the research community one can observe the trend, thatalmost all articles and reports about active DBMS are concerned with even morepowerful languages for the expression of rules, which makes the analysis of theabove mentioned properties more and more di�cult, instead of addressing thenightmarish behavior of rules in DBMS where safety should be topic numberone.The goal of our work is to show, that, with a limited language for the expres-sion of ECA{rules, which is able to simulate many of the complex constructsone can �nd in most publications about active DBMS, one can give very goodsu�cient conditions for termination and con
uence of large sets of rules. Inthis article we present an algorithm for the analysis of termination. This algo-rithm is meant to be incorporated into an interactive tool for the developmentand de�nition of ECA{rules for large applications. The algorithm can eitherguarantee, that a certain set of rules will terminate, or it can isolate the rules,which might give rise to a non{terminating execution of rules and thus givingthe programmer the opportunity to revise his rule design.This article is organized as follows: In the next two sections we give ashort introduction into OSCAR, the OODBMS prototype, into which our rulesare incorporated, and into the syntax and semantics of our language for theexpression of ECA{rules. Section 4 explains the concepts of our algorithm,followed by the comparison of our approach with related work in section 5 andsome conclusions in section 6.2 The object{oriented database model ofOSCARAs mentioned in the Introduction, these examinations are based upon theOODBMS OSCAR and especially upon the structural part of the object{orien-ted database model EXTREM [Heu89, HH91] and the OSCAR query operations[HFW90].To distinguish between values and objects, we introduce disjoint in�nite setsof abstract domains DA representing objects in contrast to simple domains DSconsisting of values like INTEGER or STRING. Each element of an abstractdomain is called an object, each element of a simple domain is called an atomicvalue. One special symbol in each of the domains is the null value ?.A class represents a (typed) set of possible objects. It can be an extensionalbase class or an intensional derived class. A base class either has an abstractdomain or is a specialization of other classes (then it is called a free class). Theassignment of domains to free classes is done by inheritance (see below).
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CLASS PersonsATTRIBUTES age : INTEGERCLASS Employees SPEC PersonsATTRIBUTES salary : REALdepartment : Departmentssuperior : EmployeesUPDATE METHOD adjust salary()MODIFIES salaryCLASS Applicants SPEC PersonsCONSTRAINT DISJOINT Employees, ApplicantsFigure 1: Complete EXTREM scheme for the running exampleExample 2.1 The example used throughout this paper collects informationabout persons and departments (see Figure 1). We introduce Departmentsand Persons as classes with an abstract domain. Since both applicants andemployees are special persons which have common properties (or attributes)like Age, they are introduced as specializations (see below) of Persons. 2An object set o for class C is a �nite subset of the domain of C and denotedby o(C). For free classes, the domains are �xed by the class hierarchy. Theset of specializations is a binary relation SPEC over base classes. Each tupleof SPEC is denoted by C1 SPEC C2 where C1 has to be a free class. C1 iscalled subclass, C2 superclass. The (re
exive and) transitive closure of SPECis denoted by <(�). We require � to be a partial order over base classes.Formally, we have for each free class Co(C) � \(C;Ci)2SPEC o(Ci):Example 2.2 In the running example, we have the specializations EmployeesSPEC Persons and Applicants SPEC Persons. In Figure 1 specializations areintroduced by the keyword SPEC. 2For the EXTREM scheme, we can de�ne a set of integrity constraints. Forexample, the object sets of Employees and Applicants (both subsets of Personsby subclassing) are forced to be disjoint by the additional disjointness constraintin the scheme de�nition.Each object is assigned a tuple of attribute values called its state. All ob-jects of a �xed class are required to have the same state type, i.e., a �xed tupleof attributes. As attribute values, we can use simple or constructed values oreven objects, then the corresponding attributes are called simple, constructed,or object-valued attributes resp.. We can recursively construct new domainsby applying set-, tuple- and list-constructors on simple and abstract domains.Additionally, we can de�ne user-de�ned Abstract Data Types (ADTs) by en-capsulating the type contructors and accessing the values by ADT-functionsvisible at the interface of the ADT.
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Employees salary department superior age�1 3000 �1 ? 51�2 1200 �1 �1 60�3 800 �1 �1 33�4 1050 �2 �5 25�5 4000 �2 ? 55Departments name�1 Toys�2 DrugsFigure 2: Object relations for the classes Employees and DepartmentsEach attribute A is assigned a unique domain dom(A). An attribute witha set- or list-valued domain is called a complex attribute.Example 2.3 In Figure 1, attributes are de�ned in the ATTRIBUTES-section ofthe EXTREM scheme de�nition language. For example, the attributes of theclass Employees are salary (a simple attribute), department superior, which are aobject-valued attributes. The attribute values for these attributes are elementsof the object sets of Departments and Employees, resp.. Since each Employees isa subclass of Persons, each element of the domain of Student is assigned an agebesides the explicitly mentioned attributes. 2The instances of classes, i.e. objects and their states, can equivalently berepresented by nested relations with additional surrogate attributes. Thesenested relations are called object relations and are in fact functions from objectsets to their states (see [HS93]).Example 2.4 As an example, we present the object relations for the clas-ses Employees and Departments in Figure 2. The Employees and Departmentscolumns, resp., represent the object identities of both classes. The values ofthe object-valued attribute department are department objects. Hence, Depart-ments is a component class of Employees and, vice versa, Employees is called anowner class of Departments. 2The behavioral component of EXTREM allows the de�nition of methods foreach of the classes and the inheritance of methods from superclasses to subclas-ses. We distinguish between query methods (derived or computed attributes)and update methods, where the e�ect is a state change of objects in the appro-priate class. In the interface of methods, attributes used in the implementationof the methods are speci�ed in the USES-section of the interface. In the interfaceof update methods, attributes (used and) modi�ed by the method are speci�edin the MODIFIES-section.Example 2.5 We have de�ned an update method adjust salary in class Em-ployees which decreases the salary of an employee to within a certain reach ofsocial welfare. 2
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In OSCAR, derived classes can be computed by object algebra expressions,queries in the O2QL language, or programs in the rule-based language LIVINGIN A LATTICE (see [HFW90, VdBH93, HS93]). For example, we can derivea subclass of employees employed in the \Toys" department by specifying theO2QL queryDERIVED CLASS Employees of Toys DepartmentSELECT OBJECT EmployeesFROM EmployeesWHERE department.name = `Toys' .On the other hand, we also can have (complex) values as a query result. Thefollowing query simply computes a set of INTEGERs (ages of employees of the\Drugs" department):SELECT ageFROM EmployeesWHERE department.name = `Drugs' .A derived class can be used in the same way as base classes. The followingECA{rules and the techniques to detect non-terminating and non-con
uentrules are heavily based on this feature of OSCAR.3 The OSCAR Trigger SystemThe OSCAR system o�ers a trigger system which should be su�cient for mostapplications. The basis of our triggers are the widely accepted ECA{rules,which were �rst introduced by HiPAC ([DBM88], [DD89]).3.1 SyntaxThe syntax for the de�nition of a trigger in OSCAR is as follows:CREATE RULE nameAFTER Event {OR Event|AND THEN Event|XOR Event}[IF Condition]THEN DO [INSTEAD] Action [DIRECT|DECOUPLED] [ON INSTANCE LEVEL][PRECEDES RuleNameList][FOLLOWS RuleNameList]The de�nition of an Event is:Operations TO"("Classexp")"{."("Attribute{, Attribute}")"}[WHERE Selectexp]Operations is de�ned as:"("Operation{; Operation}")"Operation := "Insert" | "Update" | "Increase" | "Decrease" |"Delete" | "Retrieve" | MethodnameThe other expressions are de�ned as:
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Classexp is an expression with class names and the set operators [, \ and n,de�ning a derived class.Attribute is an attribute which is de�ned for the derived class.Selectexp is a valid query language selection, de�ned on the derived class,giving another (specialized) derived class as a result. Thus the semanticsof an event is ful�lled.Methodname is a method call which is valid for the derived class.Condition is an existentially quali�ed O2QL query with the additional key-words NEW and OLD for referencing the old and new sets of objects beforeand after the triggering operations (if applicable). Alternatively, we canuse the transition classes (de�ned below) instead of NEW and OLD.Action is a list of the following expressions:� An update expression,� an insert expression,� a delete expression or� an expression of the form:Methodname TO Classexp [WHERE Selectexp]3.2 SemanticsThe semantics of an OSCAR trigger is pretty straight{forward. The buildingblocks of rule processing are closed nested transactions. If the event detec-tor signalizes an event which triggers a rule, the query which makes up theCondition part will be evaluated at a rule assertion point (i.e. a point in time,where a rule execution cycle is started: end of transaction or user de�ned). Ifthe result of the query is not empty, the Actionwill be executed. If the keywordDECOUPLED is present in the de�nition of the rule, a new root transaction will bestarted for the Action which runs autonomously from the triggering action, i.e.if the triggering action aborts, the Action part of our rule will be committed(if successful). Otherwise (keyword DIRECT, this is the default) the Action willrun as a subtransaction of the transaction that raised the triggering Event. Allnonfatal error codes will then be forwarded to the parent transaction which isresponsible for the treatment of the error condition. If a fatal error occurs, thecomplete transaction will be aborted.An Event is de�ned by a set of operations which are performed on a derivedclass. This derived class is speci�ed by1. the Classexp which consists of an expression with classnames and theset operators, thus de�ning a dreived class.2. Then a specialization of this derived class is constructed by the speci�ca-tion of a Selectexp which may use attributes of the derived class only.It limits the number of eligible extensions by giving a condition which allextensions have to ful�ll. Therefore the Selectexp can be viewed as aclass invariant, and yields a valid derived class.
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Thus the usual semantics of an event, as we know it from other publications,is kept.The Condition and Action can refer to transition classes or instances (inthe set{oriented or instance{level case respectively) for obtaining informationsabout the changes which triggered the rule. For each de�ned rule one set of tran-sition classes is created corresponding to the Operations de�ned in the eventpart (rulename del, rulename ins, rulename newupd, rulename oldupd).These derived classes are not real base classes. Therefore It is not allowed tode�ne rules on them. If a rule's event is complex, i.e. consists of some basicevents connected by OR or AND THEN the derived transition classes are crea-ted as a generalization of the derived classes which are de�ned in the basicevents. The access to these generalizations is managed by an intelligent queryprocessor.All extensions which have been deleted, inserted and updated by some rule'sactions including the e�ects of the last "regular" DML statement1, are kept inthese change classes. As mentioned above the domain and structure of thesetransition classes correspond to those of the derived classes which are de�nedin the event part of the rule rulename.If the keyword ON INSTANCE LEVEL is present, the rule will be triggeredonce for each involved instance. Otherwise the rule will be triggered only oncefor the complex data manipulation operation.If the keyword INSTEAD is present, the Action part will be executed insteadof the triggering action as in POSTGRES ([Sto92], [S+90]).After each DML statement the transition classes are �lled with the objectswhich were deleted, updated, inserted or retrieved by this DML statement ifone of the Operations occurs for the Attribute (if speci�ed) for a nonemptysubset of the extensions, described by the Classexp and the Selectexp in therespective rule de�nition to which the transition classes belong.2At each rule assertion point (i.e. at each point in time, where the ruleswill be evaluated and executed: end of transaction or user de�ned) the rulestriggered rules are executed with respect to the following algorithm:WHILE {not_empty_derived_rule_class}- {not_yet_completed_composite_event} != {} DOBEGINSelect one of the rules r with the highest prioritywhere {not_empty_derived_rule_class}- {not_yet_completed_composite_event} != {};Evaluate its Condition;IF Condition = TRUETHEN Execute it in the required fashion;Delete all objects out of their correspondingderived_rule_classes;Check for completion of composite eventsEND; {WHILE}The detection of complex events involving AND THEN is done by means ofPetri nets.1which started the cascading execution of rules2Please note, that in our model objects can exist in more than one class at a time.
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Example 3.1 Consider the following rule:CREATE RULE toy_subordinate_delAFTER (DELETE) TO EmployeesWHERE department.name = "Toys"IF EXISTS SELECT OBJECT Employees FROM EmployeesWHERE department.name = "Toys"THEN DO DELETE FROM Employees WHERE department.name = "Toys"AND superior IN toy_subordinate_del_delThis trigger recursively deletes employees of the toy department if their chief isdeleted. The rule's name is toy subordinate del, it gets triggered by a dele-tion, and therefore a transition class is created automatically. It's name is con-structed according to the rules mentioned above: toy subordinate del del.This transition class is then used in the Action part of the rule to perform therequired deletions. 24 Termination4.1 IntroductionWe'll �rst give a brief sketch of the idea behind our analysis algorithm. It issomewhat similar to the termination test in [AWH92]. The improvements inour algorithm consist of� the incorporation of OO concepts,� the use of generic operations as well as method calls as Action,� a much richer rule model,� greatly improved su�cient conditions (even in the �rst stage), and� an additional analysis stage, which makes our su�cient conditions evenstronger.Also, we can equally handle set{oriented and instance{level rules. In the rema-inder of the article we concentrate on set{oriented rules.Our algorithm consists of two stages. In the �rst stage we construct atriggering graph out of the syntax of our rules. If our triggering graph hasno cycles, we can guarantee that our set of rules will terminate for all initialdatabase states.In the second stage we analyze all strong components of the graph sepa-rately. We group the actions together to one complex operation which modi�esthe same objects in the same derived class. If this complex operation satis-�es certain criteria like monotonicity, we are able to remove some edges in therespective strong component, thus possibly eliminating some cycles.The only prerequisite needed for our algorithm is the assumption that theAction part of a trigger will always terminate. This is not obvious because asa part of the Action there may be a method call. Our methods are writtenin a Turing{complete programming language. If there are only retrieve, insert,
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update and delete statements in the Action part of each trigger, this propertyis guaranteed to hold.Our goal is to compute subsets of triggers fti1 ; :::; tikg out of a set of triggersT = ft1; :::; tng that might give rise to non{terminating cyclic execution of thetriggers' actions, or, vice versa, to verify that the triggers in T will terminatefor all initial database states dI .4.2 Domains as LatticesFor the analysis of termination in the two stages of our algorithm we needa formal foundation for the application of �xed{point theorems. Therefore weapply the notion of lattices to our domains. This enables us to treat all domainsin a uniform way.By a lattice we understand a system � = (A;�) formed by a nonempty setA and a binary relation �, which establishes a partial order in A, and that forany two elements a; b 2 A there is a least upper bound a [ b and a greatestlower bound a \ b.Every domain in OSCAR3 consists of such a nonempty set. The partial or-der is either de�ned by default or can be de�ned by overloading the comparisonoperators (for not set{valued ADTs). For the ordering of all set{valued domains(i.e. Classes, some ADTs, SET and LIST4) we use the set inclusion relation.The least upper bound and the greatest lower bound of any two elements ofone of our domains can thus be obtained straight{forwardly by applying theabove de�nitions.We call an operation o : � �! � increasing (decreasing) if x � o(x)(x � o(x)).5 For example a deletion of an element of a set is an decreasingoperation, because the cardinality of the set before the deletion is greater thanthe cardinality of the set after the deletion.4.3 First StageIn the �rst stage of our algorithm a directed triggering graph GT = (V;E)is constructed out of the syntax of the trigger de�nitions in T . Each ti 2 Vrepresents a trigger ti 2 T . An edge e from ti to tj in E denotes, that timight trigger tj. Therefore, if GT 's strong components consist of isolated edgeswithout loops, we can guarantee the termination of our trigger set.For the analysis of when to draw an edge from ti to tj, we need the notionof an event. An event is de�ned as follows:De�nition 4.1 An atomic event e is a 4{tuple e = (O;C;A; S) whereO is a set of operations as de�ned in the syntax description, i.e. RETRIEVE,INSERT, UPDATE, INCREASE, DECREASE, DELETE, MethodnameC is a derived class, constructed out of the Classexp de�ned above,3Classes, ADTs, INTEGER, REAL, CHAR, STRING, BOOLEAN, SET, TUPLE andLIST4We just neglect the ordering of a list's elements5Note, that our de�nition di�ers from the usual de�nition of increasing (decreasing) ope-rators in lattices!
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A is a set of attributes which are valid for the derived class, de�ned by C,S is an instance of the Selectexp de�ned above.For each atomic event this 4{tuple can easily be computed out of its syntax. Acomposite event, which is constructed out of atomic events, interconnected bythe OR and AND THEN operators and maybe brackets, is a set of atomic events,which can be computed by using the following rules:1. Get the subexpression ce1 op ce2 with the two composite events ce1and ce2 and the highest precedence.2. If op = OR or op = XOR, replace the expression by the composite event ce= fce1, ce2g, i.e. the rule is triggered by the occurrence of either ce1or ce2.3. If op = AND THEN, replace the expression by the composite event ce =fce2g, i.e. if the rule is triggered by the occurrence of ce2 after ce1occurred, we consider the occurrence of ce2 only.4. If the remaining expression consists of a single composite event ce, thenend, else goto step 1.In almost the same manner it is possible to compute an atomic event outof each statement of a trigger's Action{part straight{forwardly. The resultingcomposite event, which we will call actionevent in the sequel, describing thecomplex event, which is caused by a trigger's Action, is obtained by uniting allatomic events. The following algorithm shows the basic steps of this procedure:Algorithm 4.1 (Action ! actionevent) This algorithm performs a trans-formation of each statement of an Action into an event ei. The resultingactionevent ae then is the union of all ei:INPUT: Action with statements si, i = 1...n;OUTPUT: actionevent ae;FOR EACH statement si in the Action doBEGINIF si IN {insert, delete}THEN BEGINcompute O, C and S out of the syntax of si;A := {all attributes of the derived class C}END;IF si IN {update}then compute O (which could also possibly be increase ordecrease), C, A and S out of the syntax of si;IF si IN {methodcall}THEN BEGINIF si is an update methodTHEN IF the method is labelled as being increasing(decreasing) THEN O := {retrieve, increase}(O := {retrieve, decrease})ELSE O := {retrieve, update}ELSE O := {retrieve};
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compute C and S out of the syntax of the method call;compute A out of the USES and MODIFIES list of themethod;compute additional (O,C,A,S) tuples if in the methodbody there are further retrieve operations;ENDEND;We now use these two kinds of events to analyze, whether one rule's actioncan trigger the activation of another rule, i.e. we have to add an edge (ti; tj)to the set of edges E of GT . We therefore have to check for each rule's (ti)actionevent, whether it has something in common with the events of all rules,including ti itself.A rule's actionevent ae might trigger another rule tj if none of the followingproperties hold for each combination of atomic events of ae (e1) and tj (e2):1. The set of operations, that e1 performs is disjoint to the set of operations,to which e2 responds, or e1 includes an increase or decrease operationand e2 responds to arbitrary updates.2. The least common upper bound in the class lattice of the derived class,on which e1 performs its action and the derived class which is de�ned ine2 is Object, i.e. the most general class in the class hierarchy 6. In thiscase, the two events are de�ned on disjoint derived classes.3. The two events are de�ned on disjoint sets of attributes.4. The set of objects de�ned by the SELECT OBJECT expression of e and theset of objects de�ned by the SELECT OBJECT expression of e2 is disjointfor all database states.7If all four properties at once hold for at least one arbitrary combination ofatomic events e1 of ae and e2 of tj , we have to include the edge (ti; tj) into E,thus marking that ti might trigger tj.As stated above, we have to go through these steps for all pairs of rules,which can be constructed out of T . If the strong components of the resultingtriggering graph GT consist of isolated edges without loops only, T is guaranteedto terminate for all initial database states. If this condition does not hold, wenow have to launch stage two on GT , which analyzes all strong componentsseparately, in order to �nd some edges that can be removed.We summarize the notions de�ned above with a little example:Example 4.1 We introduce two triggers. The �rst trigger �res if an old em-ployee (age � 40) is inserted into the Employees class. It will then delete theoldest employees so that our company does not have too many old employees.The second trigger �res if a young employee (age < 40) is deleted. It will theninsert the youngest employee from the class Applicants into the Employees class.The two triggers for this purpose are de�ned as follows:6In the running example, Persons and Departments are automatically disjoint specializati-ons of Object.7This can (for some cases) be veri�ed by testing predicates like in [BJNS94]
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t1:AFTER (INSERT) TO Employees WHERE age >= 40THEN DO DELETE FROM Employees WHERE (age >= 40) AND (age >= ALL(SELECT age FROM Employees))t2:AFTER (DELETE) TO Employees WHERE age < 40THEN DOINSERT INTO Employees OBJECTSSELECT OBJECT Applicants FROM Applicants WHERE age <= ALL(SELECT age FROM Applicants);DELETE FROM Applicants OBJECTSSELECT OBJECT Applicants FROM Applicants WHERE age <= ALL(SELECT age FROM Applicants)In the corresponding triggering graph GT we have edgesE = f(e1; ae1); (e2; ae2); (ae2; e1)g.E does not contain (ae1; e2) because a predicate testing algorithm can verifyeasily that the set of objects which is touched in the action of t1 is disjoint tothe set of objects to which deletions t2 reacts for all possible extensions of theclass Employees.Thus GT does not contain any cycle. Therefore T = ft1; t2g is guaranteedto terminate for all initial database states dI. 24.4 Second StageBecause of the limited space available, we can just give a brief overview of themain concepts, we are using for the second stage of our algorithm.We now analyze each strong component of GT , which does not consist ofan isolated edge without loops, separately. It is possible to remove an edgefrom a strong component of GT , if one rule some time performs an "empty"operation after a �nite number of steps. This is for example the case, if we havea delete operation on a set{valued domain. If there is no other operation inthe respective strong component, which inserts a value into the set, repetitivedeletion of elements from this set will, after a �nite number of steps, yield anempty set. Any further delete operations on this set will therefore be operations,that perform nothing on the database. Thus, the cycle will be interrupted,and we can remove the respective edge from this rule to the next one whichis triggered by the respective deletion of objects. We extend this notion toarbitrary types by the extensive use of lattice theory.If we can't ful�ll the conditions which are shown below, the respective edgeswon't be considered for removal.We model this behavior by means of lattices. Each possible domain inOSCAR can be interpreted as a lattice.8Lemma 4.1 The repetitive application of an increasing (decreasing) operationon a lattice will terminate after a �nite number of steps if:8For ADTs we have to overload the comparisonoperators. If this is not done, the respectiveedge will not be considered for removal from GT .
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1. the step size of the operation is non{decreasing (non{increasing)9,2. there is an upper (lower) bound for the operation (possibly the "0" and"1" elements of the lattice, if it is complete).Proof (Sketch):The termination itself follows out of the application of the contraction theorem.The property that the step size must not be decreasing is used for proving thetermination after a �nite number of steps for lattices with an in�nite numberof elements. 2The property, whether an operation is increasing or decreasing can be acqui-red by analyzing the transitional conditions of methods and applying predicatetesting algorithms to update operations. For the deletion and insertion of valuesfrom and into set{valued attributes or classes, this property holds obviously:A delete is a decreasing operation, because the cardinality of the set becomessmaller, an insertion is an increasing operation, because the cardinality is in-creased. The lower bound for operations on sets is the empty set, the stepsize in a set is at least the increasing or decreasing of the cardinality by one.Therefore these properties hold automatically for most operations on sets.The upper or lower bounds for the operations can be formulated in eitherof three ways:� as integrity constraints on (derived) classes,� as integrity constraints on methods,� in the de�nition of the derived class in the Selectexp.These conditions, if met, won't lead to an transaction abort. Instead thetransaction won't be started. Therefore, even in the DIRECT mode, a completerollback of all rule actions will never take place, thus ensuring the wantedsemantics.In order to verify these properties for a selected strong component we grouptogether all operations of this component, that act on the same attributes ofthe same extensions, into a composite recursive operation. If the above sta-ted properties hold for one of the composite operations, we can remove theedge from GT which connects the rule with the some time "empty" operationwith the next rule (which is triggered by this operation), thus reducing ourstrong component, which will eventually split into several strong componentswith isolated edges without loops. In this way it might be possible to eliminatecomplete cycles, which were created in the �rst stage of our algorithm. If wecan't verify all of the above properties, the strong component remains untou-ched and is presented to the programmer "as is" for further considerations orremodelling.Example 4.2 We now consider the rule de�ned in example 3.1. For this ex-ample the �rst stage of our algorithm would yield a triggering graph consistingof an isolated node (representing the single trigger) with a loop. In the se-cond stage this loop will be removed because in this strong component there9This condition can be relaxed by using research results for real and integer valuedfunctions
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are only delete operations and the rule is triggered by this delete operation.In the "worst" case, the cascading triggering will stop when all objects hvebeen deleted from the class Employees. After the removal of this edge, we havea single node without loops left. Therefore our algorithm can guarantee thetermination of our set of rules for all initial database states.This special case may not be new, but in our approach it is smoothly inte-grated into a much broader theory of eliminating edges with the help of latticetheory. 2A more complex situation is shown in Example 4.3.Example 4.3 We now consider the following rule:CREATE RULE decrease_salaryAFTER (DECREASE) TO Employees.salaryWHERE decrease_salary_newupd.salary > 1000DO decrease_salary_newupd.adjust_salary(100.0) DECOUPLEDThis rule lowers all salaries of employees, who receive a cut of salary, until itis just below $1000. For removing the concerned edge in GT the second stagehas to verify the following conditions:� The method adjust salary() must decrease the salary. This condition ismet by a transitional constraint on the method (see below).� The step size must be non{decreasing. This property is met becausewe have a constant parameter (100.0) which is used in the transitionalconstraint (decrease salary oldupd.salary =decrease salary newupd.salary - amount of decrease).Additionally, we need the precondition amount of decrease > 0.� There must be a lower bound for our operation. This condition is met be-cause of the simple (i.e. automatically veri�able) condition in the WHERE{clause. The lower bound could have also been speci�ed as an integrityconstraint on the class Employees or as a post condition of the methodadjust salary().Therefore the second stage would have eliminated the respective edge, thusguaranteeing the absence of non{terminating cyclic execution of our rule. If wehad not had the precondition and the transitional constraint on the method,the second stage would not have touched the respective edge in GT . 25 Related WorkIn the last years there have been a lot of papers about many aspects of ECA{rules starting with their introduction by HiPAC ([DBM88], [DBB+88], [DD89]).The ECA{rules have since then become a kind of standard principle for mostactive DBMS. Most of the articles about ECA-rules in DBMS are concernedwith the general architecture, mechanisms for expressing and detecting events,
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conditions and actions, their representation within the DBMS, the embeddingof triggers in transactions and their applications. Widely known approachesfor the general architecture of active DBMS include SAMOS ([GD92], [GD93])with a very powerful event speci�cation language and re�ned facilities for thedetection of composite events using Petri nets ([GD94]), the event speci�cationlanguage Snoop ([CM93]) with very powerful mechanisms for the expressionof complex events and REACH ([BBKZ92]) with the stress on the temporalaspects and performance.As mentioned above, the second wave of publication about active DBMS ismainly concerned with the applications of ECA-rules for various purposes. E.g.quite a few articles deal with using triggers for the enforcement of constraints.Among them are Starburst ([CW90]), an extension to the latter approach byCeri et al. ([CFPT92]) and an approach by Lipeck, Gertz et al. which alsoincorporates temporal integrity constraints ([Ger94]). Other applications foractive DBMS include the maintenance of derived data and materialized views.All these approaches have the problems of termination and con
uence incommon, and yet there are only very few proposals for solutions. Even in com-mercial systems which incorporate active features like Ingres and Oracle, theseproblems are only addressed in a very restrictive way, if at all. These systemsdeal with termination by enforcing an upper bound for the cascaded triggeringof rules during runtime. If this upper bound is met, the whole transaction willbe rolled back even if in the next cycle the cascading triggering would termi-nate. In Oracle one cannnot even set this upper bound. It is hard{wired to 64.Con
uence is not addressed at all, it is the user's responsibility to foresee allpossible problems.The only articles dealing with the problem of termination in active DBMSare the following:� In [KU94] the authors use a di�erent paradigm than in our approach:their approach is based on term-rewriting systems which is hard to com-pare to the ECA-approach we and others use.� In [CFPT92] the authors deal with the problem in the limited focus ofconstraint enforcement. They only mention some heuristic techniques.� In [VS93] the authors give su�cient conditions to analyze termination ofCA{triggers at de�nition time. Unfortunately they only use a very limitedformalism for the de�nition of triggers. Their triggers consist of a simplequery, which, if evaluated to true, can trigger a simple and single attributeassignment. Thus, our rule de�nition language is much more powerfulthan theirs (for which termination and con
uence are even decidable!)and their approach cannnot be easily transferred to ECA{rules.� [AWH92] deals with the problem of termination in the context of rela-tional databases. In our object{oriented approach we bene�t from thericher semantics in two ways:1. We give a more powerful language for the expression of triggers and2. we can use the richer semantics of the OO data model for a moreaccurate analysis.
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The �rst stage of our algorithm resembles the one proposed by Widomet al., but even there we bene�t from the use of the INCREASE andDECREASE constructs, which already makes our �rst stage more power-ful than their algorithm. Additionally, we bene�t from the more powerfulobject-oriented concepts like subclassing. For example, it is not possiblein Starburst to express and therefore analyze subsets of tuples of relati-ons in their events. Thus, they cannot automatically detect that the rulesde�ned in example 4.1 are guaranteed to terminate after a �nite numberof steps.In the second stage we perform an even deeper analysis, thus makingour conditions much weaker. E.g. we can detect in the examples 4.2 and4.3 that there is no non{terminating cyclic execution. The algorithm in[AWH92] would detect a possible cyclic execution.� In [BW94], the authors give better conditions for the analysis of termi-nation than in [AWH92] but they also reach only the power of our �rststage. Furthermore, they only deal with CA-rules in a relational context.It is our idea to start out with a comparatively simple language for theexpression of rules, for which we can give very strong su�cient conditions.After this step is taken, we can simulate most of the more powerful atomicevents and event constructors one can �nd in other approaches. These can thenbe made available to the user by the de�nition of macros which are internallybroken down into our basic events and event constructors for the analysis oftermination. For example we can simulate� an absolute time event by de�ning an event on the system class time,� a periodic time event (e.g. every 30 minutes) by an event likeAFTER (UPDATE) TO system clock.minutesWHERE minutes mod 30 = 0,� e.g. ANY 2 (E1,E2,E3) by (E1 AND THEN E2) OR (E2 AND THEN E1)OR ... OR (E3 AND THEN E2)10,� other complex event constructors by sequences of triggers which recordthe needed prerequisites for the signaling of the complex event (e.g. ar-bitrary intermediate states) in some specially de�ned classes. This caneasily be hidden from the user.For the detection of complex events at runtime one can of course choose astrategy with a better performance. Nevertheless it is thus possible to verifythe property of terminationwithout the need to extend our algorithmon the onehand, or it is possible to extend our algorithm to support other atomic eventsor event constructors, whichever strategy seems more feasible and adequate.6 Conclusions and Future WorkWe described a set of algorithms that allows the e�cient analysis of terminationof a set of ECA{rules at de�nition time. Our algorithm cannot �nd the exact10This is a generalization of the AND operator!
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answer for all cases, but it gives some strong su�cient conditions which canisolate all subsets of rules that emmight give rise to non{terminating execution.Our conditions are meant to be incorporated into an interactive design tool forthe de�nition of rules which shows the rule designer all subsets of rules whichmay lead to non{terminating cycles of rule executions. On the other hand wecan restrict the number of rules which have to be watched for cycles duringruntime.By using OODB concepts on a large scale we have the opportunity to takeadvantage of the greater expressiveness of object{oriented databases, e.g. wecan use the class lattice for the veri�cation of empty intersections between deri-ved classes which is a decidable problem. Another advantage of our approach isthe uniform treatment of generic update operations as well as method calls onthe one hand, and of all data types, including abstract data types on the otherhand, thus incorporating the object{oriented concepts which our data modelde�nes. The data model is a real object{oriented model with all the requiredfeatures. On the other hand it is more of an evolutionary approach from the re-lational world. We don`t give up all the "goodies" like set{orientedness, genericupdates and associative query languages, which made the relational model assuccessful as it is nowadays. Therefore our approach can easily be remodeledfor the use in relational databases as well as object{oriented databases.We are currently investigating su�cient conditions for the property of con-
uence. Also for this aspect one can expect improvements over existing resultsfor active relational databases.The next step of our approach which is under development, will be a toolthat analyzes con
icting triggers during runtime by the use of Petri nets. Onlycon
icting rules have to be considered. Furthermore more complex compositeevents can easily be modeled by means of Petri nets.Other speci�cs like event inheritance and others play a vital role in other�elds like e.g. event detection but fall out of the scope of this paper. Theseaspects will be treated in a soon{to{appear PHD{thesis by the �rst author ofthis article.Finally, there are quite a number of improvements we are planning for ouralgorithms, namely:� extending the Actions by procedural constructs like IF - THEN - ELSEand loops,� analyzing the property of con
uence ([AWH92]),� using incremental methods for the construction of GT ,� using OO concepts like specialization for complex events thus making thedetection of events easier,� developing procedures for the run{time observation of possibly hazardousrules,� representing our triggers at the meta level of OSCAR,� implementation of our algorithms to analyze their behavior for large setsof triggers.
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